Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1991, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443365

RESUMO

Herpes simplex virus 1 (HSV-1) latent infection entails repression of viral lytic genes in neurons. By functional screening using luciferase-expressing HSV-1, we identify ten neuron-specific microRNAs potentially repressing HSV-1 neuronal replication. Transfection of miR-9, the most active candidate from the screen, decreases HSV-1 replication and gene expression in Neuro-2a cells. Ectopic expression of miR-9 from lentivirus or recombinant HSV-1 suppresses HSV-1 replication in male primary mouse neurons in culture and mouse trigeminal ganglia in vivo, and reactivation from latency in the primary neurons. Target prediction and validation identify transcription factors Oct-1, a known co-activator of HSV transcription, and all three Onecut family members as miR-9 targets. Knockdown of ONECUT2 decreases HSV-1 yields in Neuro-2a cells. Overexpression of each ONECUT protein increases HSV-1 replication in Neuro-2a cells, human induced pluripotent stem cell-derived neurons, and primary mouse neurons, and accelerates reactivation from latency in the mouse neurons. Mutagenesis, ChIP-seq, RNA-seq, ChIP-qPCR and ATAC-seq results suggest that ONECUT2 can nonspecifically bind to viral genes via its CUT domain, globally stimulate viral gene transcription, reduce viral heterochromatin and enhance the accessibility of viral chromatin. Thus, neuronal miR-9 promotes viral epigenetic silencing and latency by targeting multiple host transcription factors important for lytic gene activation.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Masculino , Animais , Camundongos , Herpesvirus Humano 1/genética , MicroRNAs/genética , Neurônios , Herpes Simples/genética , Fatores de Transcrição , Epigênese Genética , Proteínas de Homeodomínio
2.
PLoS Pathog ; 19(11): e1011781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976321

RESUMO

Human cytomegalovirus (HCMV) is an important pathogen for which new antiviral drugs are needed. HCMV, like other herpesviruses, encodes a nuclear egress complex (NEC) composed of two subunits, UL50 and UL53, whose interaction is crucial for viral replication. To explore whether small molecules can exert selective antiviral activity by inhibiting NEC subunit interactions, we established a homogeneous time-resolved fluorescence (HTRF) assay of these interactions and used it to screen >200,000 compound-containing wells. Two compounds, designated GK1 and GK2, which selectively inhibited this interaction in the HTRF assay with GK1 also active in a co-immunoprecipitation assay, exhibited more potent anti-HCMV activity than cytotoxicity or activity against another herpesvirus. At doses that substantially reduced HCMV plaque formation, GK1 and GK2 had little or no effect on the expression of viral proteins and reduced the co-localization of UL53 with UL50 at the nuclear rim in a subset of cells. GK1 and GK2 contain an acrylamide moiety predicted to covalently interact with cysteines, and an analog without this potential lacked activity. Mass spectrometric analysis showed binding of GK2 to multiple cysteines on UL50 and UL53. Nevertheless, substitution of cysteine 214 of UL53 with serine (C214S) ablated detectable inhibitory activity of GK1 and GK2 in vitro, and the C214S substitution engineered into HCMV conferred resistance to GK1, the more potent of the two inhibitors. Thus, GK1 exerts selective antiviral activity by targeting the NEC. Docking studies suggest that the acrylamide tethers one end of GK1 or GK2 to C214 within a pocket of UL53, permitting the other end of the molecule to sterically hinder UL50 to prevent NEC formation. Our results prove the concept that targeting the NEC with small molecules can selectively block HCMV replication. Such compounds could serve as a foundation for development of anti-HCMV drugs and as chemical tools for studying HCMV.


Assuntos
Citomegalovirus , Herpesviridae , Humanos , Núcleo Celular/metabolismo , Herpesviridae/metabolismo , Replicação Viral , Simplexvirus , Acrilamidas/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo
3.
Viruses ; 14(3)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35336886

RESUMO

After herpesviruses encapsidate their genomes in replication compartments (RCs) within the nuclear interior, capsids migrate to the inner nuclear membrane (INM) for nuclear egress. For human cytomegalovirus (HCMV), capsid migration depends at least in part on nuclear myosin Va. It has been reported for certain herpesviruses that the nucleoplasmic subunit of the viral nuclear egress complex (NEC) is important for this migration. To address whether this is true for HCMV, we used mass spectrometry and multiple other methods to investigate associations among the HCMV NEC nucleoplasmic subunit, UL53, myosin Va, major capsid protein, and/or capsids. We also generated complementing cells to derive and test HCMV mutants null for UL53 or the INM NEC subunit, UL50, for their importance for these associations and, using electron microscopy, for intranuclear distribution of capsids. We found modest associations among the proteins tested, which were enhanced in the absence of UL50. However, we found no role for UL53 in the interactions of myosin Va with capsids or the percentage of capsids outside RC-like inclusions in the nucleus. Thus, UL53 associates somewhat with myosin Va and capsids, but, contrary to reports regarding its homologs in other herpesviruses, is not important for migration of capsids towards the INM.


Assuntos
Citomegalovirus , Herpesviridae , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Núcleo Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Herpesviridae/metabolismo , Humanos , Miosinas/metabolismo , Membrana Nuclear/metabolismo , Proteínas Virais/metabolismo
4.
Nat Microbiol ; 6(5): 682-696, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33558653

RESUMO

MicroRNA miR-138, which is highly expressed in neurons, represses herpes simplex virus 1 (HSV-1) lytic cycle genes by targeting viral ICP0 messenger RNA, thereby promoting viral latency in mice. We found that overexpressed miR-138 also represses lytic processes independently of ICP0 in murine and human neuronal cells; therefore, we investigated whether miR-138 has targets besides ICP0. Using genome-wide RNA sequencing/photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation followed by short interfering RNA knockdown of candidate targets, we identified the host Oct-1 and Foxc1 messenger mRNAs as miR-138's targets, whose gene products are transcription factors important for HSV-1 replication in neuronal cells. OCT-1 has a known role in the initiation of HSV transcription. Overexpression of FOXC1, which was not known to affect HSV-1, promoted HSV-1 replication in murine neurons and ganglia. CRISPR-Cas9 knockout of FOXC1 reduced viral replication, lytic gene expression and miR-138 repression in murine neuronal cells. FOXC1 also collaborated with ICP0 to decrease heterochromatin on viral genes and compensated for the defect of an ICP0-null virus. In summary, miR-138 targets ICP0, Oct-1 and Foxc1 to repress HSV-1 lytic cycle genes and promote epigenetic gene silencing, which together enable favourable conditions for latent infection.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Latência Viral , Animais , Regulação Viral da Expressão Gênica , Herpes Simples/genética , Herpesvirus Humano 1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Neurônios/virologia , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Sci Adv ; 6(17): eaax9856, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494628

RESUMO

Cytomegalovirus (CMV) is an important cause of morbidity and mortality in the immunocompromised host. In transplant recipients, a variety of clinically important "indirect effects" are attributed to immune modulation by CMV, including increased mortality from fungal disease, allograft dysfunction and rejection in solid organ transplantation, and graft-versus-host-disease in stem cell transplantation. Monocytes, key cellular targets of CMV, are permissive to primary, latent and reactivated CMV infection. Here, pairing unbiased bulk and single cell transcriptomics with functional analyses we demonstrate that human monocytes infected with CMV do not effectively phagocytose fungal pathogens, a functional deficit which occurs with decreased expression of fungal recognition receptors. Simultaneously, CMV-infected monocytes upregulate antiviral, pro-inflammatory chemokine, and inflammasome responses associated with allograft rejection and graft-versus-host disease. Our study demonstrates that CMV modulates both immunosuppressive and immunostimulatory monocyte phenotypes, explaining in part, its paradoxical "indirect effects" in transplantation. These data could provide innate immune targets for the stratification and treatment of CMV disease.

6.
Sci Transl Med ; 11(487)2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971454

RESUMO

Neonatal herpes simplex virus (nHSV) infections cause devastating morbidity and mortality in infants. Most nHSV cases are associated with primary maternal infection, consistent with the hypothesis that maternal immunity is protective. In humans, we found HSV-specific neutralizing antibodies in newborns of immune mothers, indicating that placentally transferred HSV-specific antibody is protective. Using a murine model, we showed that passive administration of HSV-specific antibody to dams prevented disseminated infection and mortality in pups. Maternal immunization with an HSV-2 replication-defective vaccine candidate, dl5-29, led to transfer of HSV-specific antibodies into neonatal circulation that protected against nHSV neurological disease and death. Furthermore, we observed considerable anxiety-like behavior in adult mice that had been infected with low doses of HSV as neonates, despite a notable lack of signs of infection. This phenotype suggests that nHSV infection can have an unsuspected and permanent impact on behavior. These behavioral sequelae of nHSV were prevented by maternal immunization with dl5-29, demonstrating an unexpected benefit of immunization. These findings also support the general concept that maternal immunization can prevent neurotropic neonatal infections and associated morbidity and mortality.


Assuntos
Comportamento Animal , Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Imunização , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/prevenção & controle , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Ansiedade/etiologia , Feminino , Herpes Simples/sangue , Herpes Simples/virologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Humanos , Imunoglobulina G/sangue , Camundongos , Morbidade , Gravidez , Complicações Infecciosas na Gravidez/sangue , Complicações Infecciosas na Gravidez/virologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Vacinação
7.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437926

RESUMO

Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency.IMPORTANCE Herpes simplex virus 1 (HSV-1) is a human pathogen that persists for the lifetime of the host as a result of its ability to establish latent infection within sensory neurons. The mechanism by which HSV-1 transitions from the lytic to latent infection program is largely unknown; however, HSV-1 is able to coopt cellular silencing mechanisms to facilitate the suppression of lytic gene expression. Here, we demonstrate that the cellular CCCTC-binding factor (CTCF)-binding site within the latency associated transcript (LAT) region is critical for the maintenance of a specific local chromatin structure. Additionally, loss of CTCF binding has detrimental effects on the ability to reactivate from latent infection. These results argue that CTCF plays a critical role in epigenetic regulation of viral gene expression to establish and/or maintain a form of latent infection that can reactivate efficiently.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , DNA Viral/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Ativação Viral , Animais , Sítios de Ligação , Chlorocebus aethiops , DNA Viral/genética , Modelos Animais de Doenças , Células HeLa , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Mutação , Células Vero
8.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298889

RESUMO

Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress.IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved.


Assuntos
Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Citomegalovirus/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Liberação de Vírus/fisiologia , Proteínas do Capsídeo/genética , Núcleo Celular/genética , Núcleo Celular/virologia , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/virologia , Células HEK293 , Humanos , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética
9.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27847363

RESUMO

Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. IMPORTANCE: Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , MicroRNAs/genética , Mutação , RNA Viral/genética , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/genética , Ativação Viral , Animais , Sítios de Ligação , Linhagem Celular , Modelos Animais de Doenças , Herpes Simples/mortalidade , Herpes Simples/virologia , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Interferência de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Virulência , Latência Viral/genética , Replicação Viral
10.
Virology ; 497: 323-327, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27518540

RESUMO

IFN responses control acute HSV infection, but their role in regulating HSV latency is poorly understood. To address this we used mice lacking IFN signaling specifically in neural tissues. These mice supported a higher acute viral load in nervous tissue and delayed establishment of latency. While latent HSV-1 genome copies were equivalent, ganglia from neuronal IFN signaling-deficient mice unexpectedly supported reduced reactivation. IFNß promoted survival of primary sensory neurons after infection with HSV-1, indicating a role for IFN signaling in sustaining neurons. We observed higher levels of latency associated transcripts (LATs) per HSV genome in mice lacking neuronal IFN signaling, consistent with a role for IFN in regulating LAT expression. These data show that neuronal IFN signaling modulates the expression of LAT and may conserve the pool of neurons available to harbor latent HSV-1 genome. The data also show that neuronal IFN signaling is dispensable for the establishment of latency.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Transdução de Sinais , Latência Viral , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Gânglios/metabolismo , Gânglios/virologia , Herpes Simples/mortalidade , Camundongos , Camundongos Knockout , Fator de Transcrição STAT1/deficiência , Carga Viral , Replicação Viral
11.
mBio ; 7(3)2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27190217

RESUMO

UNLABELLED: Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections. IMPORTANCE: Latent infection by viruses usually involves minimizing viral protein synthesis so that the host immune system cannot recognize the infected cells and eliminate them. Herpes simplex virus has been thought to express only noncoding RNAs as abundant gene products during latency. In this study, we found genetic evidence that an HSV lytic protein is functional during latent infection, and this protein may provide a new target for antivirals that target both lytic and latent infections.


Assuntos
Cromatina/química , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Latência Viral/genética , Animais , Epigênese Genética , Herpes Simples/virologia , Heterocromatina , Camundongos , Mutação , Regiões Promotoras Genéticas , Células Receptoras Sensoriais/virologia , Proteínas Virais/metabolismo
12.
J Virol ; 89(1): 523-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339763

RESUMO

UNLABELLED: Herpesvirus nucleocapsids exit the host cell nucleus in an unusual process known as nuclear egress. The human cytomegalovirus (HCMV) UL97 protein kinase is required for efficient nuclear egress, which can be explained by its phosphorylation of the nuclear lamina component lamin A/C, which disrupts the nuclear lamina. We found that a dominant negative lamin A/C mutant complemented the replication defect of a virus lacking UL97 in dividing cells, validating this explanation. However, as complementation was incomplete, we investigated whether the HCMV nuclear egress complex (NEC) subunits UL50 and UL53, which are required for nuclear egress and recruit UL97 to the nuclear rim, are UL97 substrates. Using mass spectrometry, we detected UL97-dependent phosphorylation of UL50 residue S216 (UL50-S216) and UL53-S19 in infected cells. Moreover, UL53-S19 was specifically phosphorylated by UL97 in vitro. Notably, treatment of infected cells with the UL97 inhibitor maribavir or infection with a UL97 mutant led to a punctate rather than a continuous distribution of the NEC at the nuclear rim. Alanine substitutions in both UL50-S216 and UL53-S19 resulted in a punctate distribution of the NEC in infected cells and also decreased virus production and nuclear egress in the absence of maribavir. These results indicate that UL97 phosphorylates the NEC and suggest that this phosphorylation modulates nuclear egress. Thus, the UL97-NEC interaction appears to recruit UL97 to the nuclear rim both for disruption of the nuclear lamina and phosphorylation of the NEC. IMPORTANCE: Human cytomegalovirus (HCMV) causes birth defects and it can cause life-threatening diseases in immunocompromised patients. HCMV assembles in the nucleus and then translocates to the cytoplasm in an unusual process termed nuclear egress, an attractive target for antiviral therapy. A viral enzyme, UL97, is important for nuclear egress. It has been proposed that this is due to its role in disruption of the nuclear lamina, which would otherwise impede nuclear egress. In validating this proposal, we showed that independent disruption of the lamina can overcome a loss of UL97, but only partly, suggesting additional roles for UL97 during nuclear egress. We then found that UL97 phosphorylates the viral nuclear egress complex (NEC), which is essential for nuclear egress, and we obtained evidence that this phosphorylation modulates this process. Our results highlight a new role for UL97, the mutual dependence of the viral NEC and UL97 during nuclear egress, and differences among herpesviruses.


Assuntos
Núcleo Celular/virologia , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Liberação de Vírus , Humanos , Lamina Tipo A/metabolismo , Espectrometria de Massas , Fosforilação
13.
Cell Host Microbe ; 15(4): 446-56, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721573

RESUMO

After infecting peripheral sites, herpes simplex virus (HSV) invades the nervous system and initiates latent infection in sensory neurons. Establishment and maintenance of HSV latency require host survival, and entail repression of productive cycle ("lytic") viral gene expression. We find that a neuron-specific microRNA, miR-138, represses expression of ICP0, a viral transactivator of lytic gene expression. A mutant HSV-1 (M138) with disrupted miR-138 target sites in ICP0 mRNA exhibits enhanced expression of ICP0 and other lytic proteins in infected neuronal cells in culture. Following corneal inoculation, M138-infected mice have higher levels of ICP0 and lytic transcripts in trigeminal ganglia during establishment of latency, and exhibit increased mortality and encephalitis symptoms. After full establishment of latency, the fraction of trigeminal ganglia harboring detectable lytic transcripts is greater in M138-infected mice. Thus, miR-138 is a neuronal factor that represses HSV-1 lytic gene expression, promoting host survival and viral latency.


Assuntos
Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/biossíntese , Proteínas Imediatamente Precoces/genética , MicroRNAs/genética , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Córnea/patologia , Córnea/virologia , DNA Viral/genética , Encefalite/virologia , Regulação Viral da Expressão Gênica , Células HEK293 , Herpes Simples/mortalidade , Herpes Simples/virologia , Humanos , Masculino , Camundongos , Gânglio Trigeminal/patologia , Células Vero , Latência Viral
14.
J Gen Virol ; 95(Pt 4): 940-947, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24413420

RESUMO

The catalytic subunit of the herpes simplex virus 1 DNA polymerase (HSV-1 Pol) is essential for viral DNA synthesis and production of infectious virus in cell culture. While mutations that affect 5'-3' polymerase activity have been evaluated in animal models of HSV-1 infection, mutations that affect other functions of HSV-1 Pol have not. In a previous report, we utilized bacterial artificial chromosome technology to generate defined HSV-1 pol mutants with lesions in the previously uncharacterized pre-NH2-terminal domain. We found that the extreme N-terminal 42 residues (deletion mutant polΔN43) were dispensable for replication in cell culture, while residues 44-49 (alanine-substitution mutant polA6) were required for efficient viral DNA synthesis and production of infectious virus. In this study, we sought to address the importance of these conserved elements in viral replication in a mouse corneal infection model. Mutant virus polΔN43 exhibited no meaningful defect in acute or latent infection despite strong conservation of residues 1-42 with HSV-2 Pol. The polA6 mutation caused a modest defect in replication at the site of inoculation, and was severely impaired for ganglionic replication, even at high inocula that permitted efficient corneal replication. Additionally, the polA6 mutation resulted in reduced latency establishment and subsequent reactivation. Moreover, we found that the polA6 replication defect in cultured cells was exacerbated in resting cells as compared to dividing cells. These results reveal an important role for the conserved motif at residues 44-49 of HSV-1 Pol for ganglionic viral replication.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral , Replicação Viral , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Cistos Glanglionares/virologia , Herpes Simples/patologia , Herpesvirus Humano 1/metabolismo , Humanos , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
15.
J Virol ; 88(4): 2337-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307587

RESUMO

To facilitate studies of herpes simplex virus 1 latency, cell culture models of quiescent or latent infection have been developed. Using deep sequencing, we analyzed the expression of viral microRNAs (miRNAs) in two models employing human fibroblasts and one using rat neurons. In all cases, the expression patterns differed from that in productively infected cells, with the rat neuron pattern most closely resembling that found in latently infected human or mouse ganglia in vivo.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , MicroRNAs/metabolismo , Latência Viral/genética , Animais , Técnicas de Cultura de Células , Fibroblastos/metabolismo , Herpes Simples/genética , Herpesvirus Humano 1/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Neurônios/metabolismo , Ratos
16.
J Virol ; 87(9): 5019-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427156

RESUMO

Human cytomegalovirus (HCMV) encodes one conventional protein kinase, UL97. During infection, UL97 phosphorylates the retinoblastoma tumor suppressor protein (pRb) on sites ordinarily phosphorylated by cyclin-dependent kinases (CDK), inactivating the ability of pRb to repress host genes required for cell cycle progression to S phase. UL97 is important for viral DNA synthesis in quiescent cells, but this function can be replaced by human papillomavirus type 16 E7, which targets pRb for degradation. However, viruses in which E7 replaces UL97 are still defective for virus production. UL97 is also required for efficient nuclear egress of viral nucleocapsids, which is associated with disruption of the nuclear lamina during infection, and phosphorylation of lamin A/C on serine 22, which antagonizes lamin polymerization. We investigated whether inactivation of pRb might overcome the requirement of UL97 for these roles, as pRb inactivation induces CDK1, and CDK1 phosphorylates lamin A/C on serine 22. We found that lamin A/C serine 22 phosphorylation during HCMV infection correlated with expression of UL97 and was considerably delayed in UL97-null mutants, even when E7 was expressed. E7 failed to restore gaps in the nuclear lamina seen in wild-type but not UL97-null virus infections. In electron microscopy analyses, a UL97-null virus expressing E7 was as impaired as a UL97-null mutant in cytoplasmic accumulation of viral nucleocapsids. Our results demonstrate that pRb inactivation is insufficient to restore efficient viral nuclear egress of HCMV in the absence of UL97 and instead argue further for a direct role of UL97 in this stage of the infectious cycle.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/enzimologia , Lâmina Nuclear/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína do Retinoblastoma/metabolismo , Liberação de Vírus , Linhagem Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Humanos , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Lâmina Nuclear/química , Lâmina Nuclear/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polimerização , Proteína do Retinoblastoma/genética
17.
J Virol ; 86(20): 11066-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855486

RESUMO

Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.


Assuntos
Capsídeo/metabolismo , Citomegalovirus/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Bases , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Replicação do DNA , DNA Viral/biossíntese , Proteínas de Ligação a DNA/genética , Humanos , Mutação , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Proteínas Virais/química , Replicação Viral/genética
18.
Virology ; 417(2): 239-47, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21782205

RESUMO

Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/patogenicidade , MicroRNAs/biossíntese , Gânglio Trigeminal/virologia , Latência Viral , Animais , Portador Sadio/virologia , Modelos Animais de Doenças , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Masculino , Camundongos , MicroRNAs/genética , Deleção de Sequência
19.
J Gen Virol ; 88(Pt 5): 1410-1414, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17412967

RESUMO

Two important issues regarding a virus mutant that is resistant to an antiviral drug are its ability to replicate in animal hosts (in vivo fitness) relative to other genetic variants, including wild type, and its ability to cause disease. These issues have been investigated for a herpes simplex virus 1 mutant that is resistant to thiourea compounds, which inhibit encapsidation of viral DNA. Following corneal inoculation of mice, the mutant virus replicated very similarly to its wild-type parent in the eye, trigeminal ganglion and brain. The mutant virus was as lethal to mice as its wild-type parent following this route of inoculation. Indeed, it exhibited increased virulence. Thus, unlike most drug-resistant virus mutants, this mutant retained in vivo fitness and virulence.


Assuntos
Herpesvirus Humano 1/genética , Mutação , Animais , DNA Viral/genética , Variação Genética , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Replicação Viral
20.
Curr Protoc Mol Biol ; Chapter 15: Unit 15.8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18265376

RESUMO

Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.


Assuntos
Pesquisa Biomédica/métodos , RNA/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Primers do DNA , Indicadores e Reagentes , Sondas de Ácido Nucleico/síntese química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...